Nonlinear RISE-Based Control of an Autonomous Underwater Vehicle
نویسندگان
چکیده
منابع مشابه
OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملoptimized fuzzy control design of an autonomous underwater vehicle
in this study, the roll, yaw and depth fuzzy control of an au- tonomous underwater vehicle (auv) are addressed. yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. the discussed auv has four aps at the rear of the vehicle as actuators. two rule bases...
متن کاملSensor-Based Behavior Control for an Autonomous Underwater Vehicle
In this paper, we evaluate a set of core functions that allow an underwater robot to perform surveillance under operator control. Specifically, we are interested in behaviors that facilitate the monitoring of organisms on a coral reef, and we present behaviors and interaction modes for a small underwater robot. In particular, we address some challenging issues arising from the underwater enviro...
متن کاملNonlinear Control of an Underwater Towed Vehicle
This paper addresses the problem of pitch and depth control of an underwater towed vehicle. A nonlinear adaptive Lyapunov-based controller is designed and proven to regulate the pitch and depth tracking errors to zero. When in the presence of external disturbances and parameter uncertainties, the errors are shown to converge to a neighbourhood of the origin that can be made arbitrarily small. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Robotics
سال: 2014
ISSN: 1552-3098,1941-0468
DOI: 10.1109/tro.2014.2305791